Flight Operations

CFIT in Algonquin Park: a "Get-Home Itis" Case Study?

The following is a condensed version of Transportation Safety Board of Canada (TSB) Final Report A09O0217, relating to the tragic aviation accident, which happened to a family going home in a private aircraft, with an inexperienced pilot, in deteriorating night-VFR weather conditions, and over featureless terrain. There is so much to learn in this report alone. The full report is available on the TSB website at www.tsb.gc.ca.


On October 10, 2009, a Piper PA-28R-180 aircraft departed Kingston, Ont., at 18:27 EDT on a night visual flight rules (VFR) flight to Sudbury, Ont. On board the aircraft were the pilot and three passengers. The estimated time of arrival at Sudbury was 20:42. At 20:52, an emergency locator transmitter (ELT) signal was reported by an overflying aircraft. The aircraft was located the following day at 03:02, approximately 22 SM east of South River, Ont. All four occupants were fatally injured.

On the day of the occurrence, the pilot contacted the London Flight Information Centre (FIC) to obtain a weather briefing for a VFR flight from Sudbury to Kingston, with a view to returning to Sudbury in the evening. During the briefing, the pilot was informed that a cold front was moving in from the west, extending north to south, and would reach Sudbury at approximately 20:00. Ahead of the front, the forecast was for showers and a ceiling of 3 000 ft ASL. As the briefing continued, the pilot was advised that if the arrival in Sudbury was before dark, the weather would remain suitable for a VFR flight. However, after dark, the forecast called for isolated, towering cumulus clouds and a visibility of 3 mi. in light snow showers. In Sudbury, the sunset was to be at 18:47 and twilight at 19:17. At 11:32, the pilot contacted the London FIC for a second time, filed a flight plan for Kingston and also obtained an updated weather forecast for the return flight to Sudbury. The aircraft departed Sudbury at 12:08 and arrived in Kingston at 13:57.

At 16:55, the pilot phoned the London FIC to obtain a weather briefing for the return flight from Kingston to Sudbury. The pilot planned on departing Kingston at 18:00, with an estimated time of arrival in Sudbury between 20:00 and 20:30. At 17:55, the pilot placed a second call to the London FIC to file a VFR flight plan. The flight plan indicated that it was to be a VFR flight direct to Sudbury, with airspeed of 135 kt and a time en route of 2 hr and 15 min. The estimated time of arrival in Sudbury was 20:42, with 3.5 hr of fuel on board. The aircraft departed Kingston at 18:27. The last radio contact occurred as the aircraft was leaving the Kingston control zone.

The Montréal Area Control Centre (ACC) radar recorded the first 30 min of the flight, and its last radar hit recorded was at 18:52. The aircraft was on a direct track to Sudbury at 3 000 ft ASL.

The aircraft first appeared on the North Bay radar at 19:37. It was approximately 30 NM north of the direct track to Sudbury and at 2 400 ft ASL. The last radar contact occurred at 19:41. The aircraft was approximately 3 NM south east of the accident site at 2 100 ft ASL. During the last 4 min of radar coverage, there were several heading changes, mainly from westerly to northwesterly in direction.

The aircraft was located on October 11, at 03:02 near the western boundary of Algonquin Park, in hilly terrain with ground elevations up to 1 750 ft ASL. The hills were covered with 80- to 100-foot tall hardwood trees. The main wreckage was located approximately at the mid-point of a tree-covered hill, at an elevation of 1 660 ft ASL. The aircraft was at a near-level altitude when it began to strike the tops of trees, which were located at the base of a gulley prior to rising terrain.

The aircraft was certified, equipped and maintained in accordance with existing regulations and approved procedures. Navigation equipment included a Garmin GPSMAP 696. This model offered the satellite weather option (subject to a 15 min delay) as well as a terrain/moving map feature. Damage to the GPS unit precluded the downloading of data. It is therefore unknown whether these features were used.

The pilot held a valid private pilot licence for single-engine land and seaplanes. The last pilot logbook entry was dated 23 August 2009. The pilot had accumulated 205.4 hr of total time, broken down as follows:

Day/Dual Day/PIC Night/Dual Night/PIC
102.8 79.9 17.2 5.5

The pilot had completed the required training and applied for a night rating; however, there were no records to indicate that Transport Canada had received the application. A rating had not been issued either. Part of this night training included a night-time cross-country flight from Sudbury to Kingston with an instructor. This was done on June 5, 2009, which was the last time the pilot had flown at night prior to the accident. Based on logbook entries, this occurrence was to be the pilot's first night-time cross-country flight as pilot-in-command. The pilot did not hold an instrument flight rules (IFR) rating.

Weather information

At 16:55, the pilot phoned the London FIC to confirm if the forecast weather for Sudbury had improved. The London FIC provided information derived from the Graphical Area Forecast (GFA) for the Ontario/Quebec region at 13:41, which was valid for use from 20:00 onward (see Figure 1).

Figure 1. GFA showing intended route and point of departure. Destination is end of line.
Figure 1. GFA showing intended route and point of departure.
Destination is end of line.

A cold front stretching from east of Sault Ste. Marie northward to Timmins was the major meteorological influence.

East of the cold front, in the area stretching from Algonquin Park southeast toward Kingston, the GFA was forecasting:

  • scattered clouds based at 4 000 ft, with tops between 6 000 and 7 000 ft ASL; and
  • visibility of more than 6 mi.

Immediately east of the cold front, the GFA was forecasting the following:

  • ceilings of 800 ft AGL;
  • visibility of 4 SM in light rain showers and mist;
  • scattered, towering cumulus clouds with tops at 18 000 ft ASL; and
  • intermittent visibilities from 5 to more than 6 SM in light rain and mist.

Immediately west of the cold front, the GFA was calling for:

  • ceilings of 500 ft AGL;
  • visibility of ¾ SM in light snow showers;
  • scattered, towering cumulus clouds with tops at 18 000 ft ASL;
  • intermittent visibilities from 3 to 6 SM in light snow; and
  • layer of broken cloud based at 3 000 ft ASL and topped at 16 000 ft ASL.

Further west, the GFA called for:

  • visibilities of 3 SM in light snow showers;
  • isolated, towering cumulus clouds topped at 8 000 ft ASL;
  • elsewhere visibilities greater than 6 SM; and
  • broken cloud layer based at 3 000 ft ASL and topped at 8 000 ft ASL.

The cold front was moving east at 30 kt, doubling in speed from the previous GFA. It was estimated to arrive in the Sudbury area at about the same time as the flight. The cold front had passed Sault Ste. Marie earlier. The ceiling was recorded as 800 ft AGL, with a visibility of 3 SM in snow showers.

The pilot and the London FIC discussed departing Kingston to arrive in Sudbury before the front moved in and considered North Bay as an alternate destination, which was 59 NM to the east of Sudbury.

At 17:55, the pilot placed a second call to the London FIC to file a VFR flight plan. When asked if weather or other information was needed, the pilot referred to the previously obtained briefing. Having already acquired weather information and made the decision to undertake the flight, the pilot inquired about any changes for Sudbury. Information derived from the Sudbury terminal aerodrome forecast (TAF) and weather radar was provided.

The TAF for Sudbury, within the timeframe of the flight, was as follows:

  • from 18:00, wind 220° true at 12 kt gusting 22, visibility of greater than 6 SM and cloud at 5 000 ft broken; and
  • temporarily from 18:00 to 22:00, visibility of 5 SM with light rain showers and mist, as well as a broken cloud layer at 20:00.

The weather radar at Sudbury displayed weak returns toward the west, indicating isolated rain showers. The London FIC also provided abbreviated weather reports for Gore Bay and a variety of airports to the west of Sudbury. The London FIC indicated that the weather conditions for Sudbury, at the time of arrival, were forecast to be favourable and that any precipitations would be very light.

The NAV CANADA Flight Services Manual of Operations (FS MANOPS) requires flight service specialists to acquire insight into a pilot's intentions and requirements, as well as provide the necessary related briefings. The pilot did not request the aviation routine weather reports (METAR) or special reports (SPECI) in full for various stations near the route of flight, including reported altimeter settings and winds aloft. Paragraph 305.4E of the FS MANOPS requires flight service specialists to provide "details of surface weather observations, aerodrome forecast, forecast winds and temperatures." However, the specialist has the discretion to provide additional weather information, even if it may not be entirely consistent with the pilot's stated requirements; no additional information was provided.

At the time of the occurrence, the weather in the vicinity of the accident included a mixture of rain and snow, as well as gusting wind conditions, estimated to be in excess of 25 kt.

Route information

The pilot planned a direct route from Kingston to Sudbury. Initial radar returns indicate that the pilot was following the planned route and with such precision as to suggest the onboard GPS was used as the primary navigational aid. The flight departed Kingston at 18:27. Civil twilight for the Kingston area was calculated to end at 18:59. With the exception of the first 32 min, the flight was conducted at night.

The selected route took the aircraft over terrain that provided fewer and fewer features as the flight progressed northwest of Kingston. Visual navigation would have been challenging at night. Any lights on the ground that could have assisted the pilot would have been sparse and, based on forecast and reported weather conditions, may not have been visible. The planned route would take the aircraft over higher terrain. The Kingston airport elevation is 303 ft ASL. The flight would have overflown areas, with maximum elevation figures ranging from 1 700 ft ASL to as high as 2 400 ft ASL. A direct route would have taken the aircraft over spot elevations as high as 1 875 ft ASL in Algonquin Park.

The planned route of flight provided few ground stations from which the pilot could obtain updated weather information or ask for assistance. These ground stations were Kingston, North Bay, Muskoka and Sudbury. Successful radio communications would be subject to the line-of-sight limitations; if the aircraft were to maintain an altitude of 3 000 ft ASL, the theoretical radio range would have precluded communications with both North Bay, located 50 NM northwest of the accident site, and Muskoka, located 65 NM southwest of the accident site.


The major part of the occurrence flight was to be conducted at night. While documents indicated the required training to obtain a night rating had been completed, the pilot's license had not yet been endorsed. The pilot had minimal experience flying at night. The pilot had flown this trip before with his instructor, and the aircraft was equipped with a GPS. The pilot likely felt capable of undertaking the flight, notwithstanding the navigational challenges of flying at night over areas that provided few useable visual aids.

Good VFR weather persisted in Kingston for the entire day of October 10, 2009. Before calling the London FIC for a weather briefing prior to departing Kingston, the pilot had already inferred that the forecast conditions for Sudbury were improving.

The pilot's first phone call to the London FIC for a weather briefing occurred 1.5 hr prior to the actual departure from Kingston. The briefer informed the pilot of the forecast weather that could be encountered ahead and behind the cold font. The briefer also indicated that the front was expected in the Sudbury area at about the same time as the aircraft's planned arrival.

The pilot obtained a weather briefing by phone and, in all likelihood, did not have the GFA to refer to, thereby precluding any visualization of the weather. Otherwise, the pilot would have seen that the forecast weather associated with the front would be encountered en route, well before reaching the frontal surface and destination. The pilot likely assumed the weather to be strictly associated with frontal passage, hence the decision to leave as soon as possible to arrive in Sudbury before the front. Moreover, based on the briefing, the pilot focused almost exclusively on the destination forecast weather, to the exclusion of the weather forecast reported elsewhere along the flight route.

Having created a weather image an hour earlier, the pilot's subsequent conversation with the London FIC suggested more favourable forecast conditions in Sudbury. This may have served to confirm the pilot's initial decision. Here again, the exchanges between the pilot and the briefer focused exclusively on the forecast at the destination and not en route.

The aircraft altitude likely did not exceed 3 000 ft ASL throughout the duration of the flight. Flight at that altitude would have made radio contact with en route ground stations difficult, if not impossible. Even if radio contact was possible, there were few weather reporting stations from which the pilot could had made a reasonable reassessment of the conditions and reviewed the decision to continue toward the destination.

The initial part of the flight was along a direct line from Kingston to Sudbury, indicating the pilot was likely navigating via the onboard GPS. When the aircraft was subsequently picked up by the North Bay radar, it was significantly north of the desired track. The aircraft was also descending with frequent heading changes. This suggests the pilot was navigating around cloud and/or terrain, trying to find a clear route between the clouds and the hills. Although the aircraft was north of the initial Sudbury track, it was on a westerly heading when it struck trees, rather than a northerly heading towards the alternate airport in North Bay. This suggests the pilot was still attempting to proceed to the destination.

Originally shaped as a line from north to south, the weather system was moving from west to east. It covered an area from Southwest Ontario to north of Sudbury. The heaviest concentration of precipitation was at the front, where there were no weather reporting stations. A mixture of rain, snow and strong winds were also present. As it moved east, the front began to change shape and appeared to be more convex. This meant that, at the outer tips, the weather was not as severe and any available weather reports were not indicative of the actual weather likely encountered by the pilot.

The front was changing in appearance while the aircraft was en route and there were no weather updates available to compel a re-evaluation of the pilot's decision. The aircraft was flying from good night VFR weather conditions into deteriorating weather conditions. Visibility would have been reduced as the cloud deck dropped and the precipitation increased. This, combined with the fact that Algonquin Park has very few light sources to provide ground reference, would have made it difficult for the pilot to maintain visual reference with the ground. The pilot was not IFR rated, so climbing into and, perhaps, above the cloud to divert to North Bay was not an option.

The pilot had not obtained altimeter settings for stations along the flight route during the weather briefings. The planned route would take the aircraft over rising terrain and toward an area of lower pressure. The temperatures were also below International Standard Atmosphere (ISA) conditions. Therefore, if left untouched, the altimeter would have read approximately 130 feet higher than the actual altitude of the aircraft.

Findings as to causes and contributing factors

  1. The pilot, with minimal night flying experience, took off at night without fully appreciating the marginal weather that was forecast en route.
  2. The pilot planned the flight over inhospitable terrain that afforded few visual cues for VFR navigation and continued flying into deteriorating weather conditions.
  3. The pilot likely encountered conditions where ground reference was lost and altitude was not maintained, resulting in the aircraft striking trees in an area of rising terrain.

Findings as to risk

  1. The altitude at which the aircraft was flown precluded radio communication with ground stations along the flight route. This increases the risk that pilots may be unable to obtain critical flight information on a timely basis.
  2. The failure to apply current altimeter settings along the flight route, particularly from an area of high to low pressure, may result in reduced obstacle clearance.

Other finding

  1. Although the pilot had the required training for a night rating, there was no documentation found that a night rating had been issued by Transport Canada.

Rotorcraft Technology and Safety

by Stéphane Demers, Civil Aviation Safety Inspector, Rotorcraft Standards, Standards Branch, Civil Aviation, Transport Canada

This past spring, the rotorcraft industry met at their annual tradeshow followed by a safety summit, in Vancouver. The trade show is organized by the Helicopter Association of Canada (HAC) and the safety summit is the brainchild of the hosts, the Canadian Helicopter Corporation (CHC).

After these events, it was clear that the helicopter industry today is focused on two key factors: technology and safety. During the HAC trade show, I saw that modern cockpits, advanced maintenance and operating software, and safety management systems (SMS) were the lead influences for today's operators.

Customer demand and a direct impact on profit margins have been driving the industry to embrace these changes. As SMS settle and mature into our aviation fibre, it is becoming an expected part of the aviation asset the customer demands, in addition to new technology. Not so long ago, you would never have expected to see an older light helicopter with a glass panel, but this is becoming more of a norm as operators keep up with customer expectations. It is becoming difficult to find a new machine with anything other than a glass panel, often with complete night vision goggle (NVG) compatibility, directly from the manufacturer. Similarly, the layers of safety—improved through the implementation of an SMS—are no longer only for offshore operators, as customers also expect this from many aerial work or air taxi operators.

From a regulator's point of view, it gives Transport Canada (TC) new challenges, but these trends clearly point towards increasing the safety of the travelling public, which to TC includes all of the crews flying in and around those helicopters. While there is no denying that recent global financial downturns have affected aviation, the demand for new technology and safer operations remains strong and shows no sign of letting up.

The HAC trade show provided an excellent opportunity to mingle with operators and manufacturers to see the full spectrum of new technologies available. Of course, there are always the new aircraft and engines, but there were also a great deal of software solutions to track aircraft in the field in addition to software used for tracking maintenance and logistics. All of this adds to the effectiveness of any business and provides great tools that dovetail nicely with a company's SMS. There were excellent breakout sessions covering safety, operations and government regulations topics. What was particularly interesting was the requirement for proper regulations governing the use of Night Vision Imaging Systems (NVIS) in Canada. Many operators already use NVG and the demand continues to grow. Demand for the use of Enhanced Vision Systems (EVS) using infrared imagery is also growing. The emergence of these new optic systems highlighted a void in our regulations that TC is addressing with keen involvement from industry. TC has been working diligently with operators, training providers and the National Research Council (NRC) to develop regulations that will fully embrace the enhanced capabilities of NVG and EVS. Much like global positioning systems (GPS) have become the norm in nearly all cockpits today, it may well be the same for NVG and EVS within the next 5 to 10 years. The acceptance and availability of these imaging solutions may lead to more revenue work being conducted at night, while enhancing the safety of current night operations, particularly in the Arctic. As these imaging systems mature, we could even "see" an end to unaided night flying.

The HAC forums provided an opportunity for members of organizations, such as the Airborne Law Enforcement Association (ALEA), to voice their concerns regarding regulatory changes in the Canadian Air Regulations (CARs) Subpart 4, for Private Operator Passenger Transportation. They feel that the recent renewal of the TC oversight of Subpart 4 operators does not entirely address private rotorcraft operations in law enforcement, including some provincial forestry and wildlife departments. TC listened to the ALEA concerns and will continue to work with private rotorcraft operators towards a solution for appropriate regulatory oversight of their niche operations.

At the CHC Safety Summit, it was particularly pleasing to see representation from across a broad spectrum of aviation. The ever-growing attendance of this event clearly supports the idea that safety is not only important, but also leads to better revenues. The CHC hosts did an outstanding job, as this was by far the best-organized event I've attended in my aviation career. Topics covered diverse subjects such as SMS, new technology in the cockpit, accident investigation, fatigue management and human factors. This event is a must for pilots, dispatchers, maintenance and management alike. It was pleasantly surprising to see so many aviation experts in person after having previously seen them so often on television or in training films.

In summary, it is clear that technology drives safety and that safety drives technology. The new gadgets mean better and safer flying at lower operating costs, and safety systems enhance operations providing a safer environment for everyone, including increased productivity, which leads to better profits. You could almost put safety, technology and profit into one of those little diagrams like we use for recycling, as those three are all connected in an infinite loop.

Wildlife Hazards: Updates and Advice

by Adrienne Labrosse, Wildlife Management Specialist, Aerodromes Standards, Standards, Civil Aviation, Transport Canada

The risk that wildlife activity on and around an airport poses to flight safety has commonly been understood and respected by the aviation community. However, the general public has remained mostly unaware of the potential hazard that increases in problem species populations, such as Canada geese, create. That is, until January 15, 2009, when the event commonly referred to as the "Miracle on the Hudson" occurred. The ingestion of Canada geese into the engines of US Airways Flight 1549 shortly after taking off from LaGuardia Airport in New York City caused the pilots to ditch the Airbus 320 in the Hudson River. Miraculously, everyone was safely evacuated and media coverage of the event was extremely high, educating those who were previously unaware of the risk wildlife posed to aviation safety.

In Canada, there have also been critical, though less public, bird strikes over the last year. In September of 2010, at the airport in Montmagny, Que., a Beech King Air struck fifteen gulls during climb and lost power in both engines. The aircraft was ditched 1 000 ft off the end of the runway, where everyone on board was evacuated safely and without injury.

In October of 2010, at Edmonton International Airport, an ERJ 190 experienced a multiple Canada goose strike while climbing through 2 000 ft AGL and was forced to declare an emergency and make a return landing. The aircraft sustained significant damage to the engines, cowlings, fan blades and wings.

Birds are not the only threat to aviation safety, especially at smaller airports that have no form of fencing. In Steinbach, Man. in October, a Cessna 152 struck a deer during landing. There were no reported injuries; however, the aircraft sustained substantial damage to its propeller and engine mount.

Illustration of deer on runway. Birds should not be your only concern around some airports.
Birds should not be your only concern around
some airports, as shown here.

Effectively managing wildlife at an airport is an important part of reducing the risk of wildlife strikes and is a regulatory requirement at certain airports. However, there are also important actions that pilots can take to further reduce the risks or to successfully deal with a strike should one occur.

Nearly 75 percent of all bird strikes occur within 500 ft of the ground, which also happens to be when aircraft are in the most critical phases of flight and are most vulnerable to loss of control. The probability of bird strikes decreases dramatically after 3 000 ft AGL. Pilots should therefore aim to achieve cruise altitude as soon as possible at the best rate of climb. Flights over areas such as land fills, shorelines or wildlife sanctuaries that are known to attract birds should be avoided. It is important to remember that birds are more active at dawn or dusk and during spring and fall migrations. If a flock of birds is encountered during flight, and it is safe to take evasive action, pilots should consider climbing above them since anecdotal evidence suggests birds will bank downward or laterally.

If a bird strike does occur, aircraft control needs to be maintained. Pilots should refer to checklists and carry out prescribed procedures. An assessment of the damage and its effects on landing performance is required. A controllability check prior to attempting to land should be considered. If the windshield is penetrated, the aircraft needs to be slowed to reduce windblast. Pilots should use sunglasses or goggles for protection against debris or precipitation and if drag becomes an issue, a rear or side window should be opened. Before returning to the air, the aircraft needs to be inspected by a certified maintenance engineer. The strike is to be reported using the Transport Canada (TC) bird strike reporting system at wwwapps.tc.gc.ca/Saf-Sec-Sur/2/bsis/s_r.aspx?lang=eng. The data collected through the submission of strike reports is used to create trend analyses, which reveal problem areas, species, and times of year and day.

TC, in cooperation with the Federal Aviation Administration, has created a DVD and an interactive CD-ROM entitled Collision Course, which provides detailed information about wildlife hazards for pilots in commercial, general and rotary wing aviation as well as for instructors at flight training schools. These instructional tools can be obtained by contacting the Wildlife Management Specialist at TC at WildlifeControl-Controledelafaune@tc.gc.ca or 613-990-4869.

Restrictions Affecting Seaplanes

by Mark Laurence, Civil Aviation Safety Inspector, Standards Branch, Civil Aviation, Transport Canada

If you are one of the lucky few that have the opportunity to fly a seaplane, you may have asked yourself at one point, "is it okay if I land here?" This article contains several references that you can use to help answer this question.

When the location is listed in the Canada Flight Supplement (CFS) or Water Aerodrome Supplement (WAS), it is pretty straight forward, almost pilot proof, I would say. Restrictions are listed whether prior permission is required or not, and a contact name and telephone number are provided.

For locations not contained in the CFS or WAS, but with more obvious "ownership", such as ports (harbours), seaways, or National Parks, you should contact the appropriate authority and ask. The Canada Marine Act and its associated regulations may restrict (approval required) or prohibit seaplane operations in ports and seaways. Contact the applicable Port Authority.

The Canada National Parks Act, through its regulations, imposes restrictions on the operations of aircraft within national parks. Before you decide to fly into a place such as Lake Louise, check with the authorities at Banff National Park and find out if they would mind. I assume that the authorities would mind, and by "mind" I mean probably seize your seaplane and/or fine you. Contact the appropriate Parks Canada office.

What about lakes? How would you know if a lake was used as a drinking water source for a city or town resulting in all vessels being prohibited? Some lakes have prohibitions on powered vessels, horsepower restrictions, or speed limits. How do you find out? The Schedules to the Vessel Operation Restriction Regulations list, by province, the different types of restrictions (vessel prohibitions, horsepower restrictions, speed limits, etc.) and the bodies of water affected. These can be found at: laws-lois.justice.gc.ca/eng/regulations/SOR-2008-120/?showtoc=&instrumentnumber=SOR-2008-120.

As a seaplane is considered a vessel while operating on the surface of a body of water, the Vessel Operation Restriction Regulations apply. The Regulations are published under the Canada Shipping Act, 2001.

Have you ever heard of any of these canals: Rideau, Tay, Trent-Severn, Murray, Sault Ste. Marie, Saint-Ours, Chambly, Sainte-Anne-de-Bellevue, Carillon, Lachine, or St. Peters? If you wish to operate a seaplane on any of them, you should take a look at the Historic Canal Regulations. There may be restrictions on these canals that you should be aware of before doing so.

Recently, a new section—Restrictions Affecting Seaplanes—was added to both the CFS and the WAS. This section is intended to raise awareness among seaplane pilots that restrictions exist on some bodies of water.

My recommendation is simple: check before you go.

Black Fly Air
Click image to enlarge

Date modified: